Belajar Induksi Matematika Pada Kurikulum 2013
Induksi Matematika menjadi viral lagi di dunia matematika setelah sempat hilang dari peredaran. Sebenarnya bukan hilang sich "tetapi dihilangkan" oleh para guru atau para penerbit. Karena Induksi Matematika pada beberapa buku matematika KTSP masih ada tetapi materi dianggap pada tahap pengayaan.
Materi pada tahap pengayaan dengan Bahasa Indonesia sehari-hari artinya bisa diajarkan atau bisa tidak diajarkan atau diajarkan pada siswa yang lebih menyenangi matematika.
Pada kurikulum 2013 induksi matematika dimunculkan kembali, berdasarkan Permendikbud Tahun 2016 Nomor 024 Lampiran 16 yang mengatur tentang Kompetensi Inti dan Kompetensi Dasar Matematika SMA disampaikan kompetensi dasar siswa salah satunya "Menjelaskan metode pembuktian Pernyataan matematis berupa barisan, ketidaksamaan, keterbagiaan dengan induksi matematika"
kompetensi Menjelaskan metode pembuktian Pernyataan matematis berupa barisan, ketidaksamaan, keterbagiaan dengan induksi matematika diharapkan tercapai pada kelas XI mata pelajaran matematika wajib.
Untuk mengingatkan kembali mari kita coba coret-coret lagi, cerita lama tentang induksi matematika.
Pada buku Matematika SMU Kelas I untuk KBK dan Sistem Semester karangan Bapak Dr.Oki Neswan dan Bapak Dr.Wono Setya Budhi disampaikan bahwa teknik induksi matematika sangat sederhana.
Basis Induksi
Buktikan $P\left ( 1 \right )$ benar.Langkah Induksi
Buktikan untuk tiap $k$ bilangan asli $P\left ( k \right ) \rightarrow P\left ( k+1 \right )$.Mengapa kedua langkah di atas cukup untuk membuktikan tak berhingga buah pernyataan $P\left ( n \right )$?. Secara intuitif hal ini dapat dijelaskan sebagai berikut:
Karena $P\left ( 1 \right )$ berlaku pada basis induksi dan $P\left ( 1 \right ) \rightarrow P\left ( 2 \right )$ juga berlaku pada langkah induksi, maka dengan Modus Ponens kita peroleh $P\left ( 2 \right )$ berlaku.
Tapi kita juga tahu bahwa $P\left ( 2 \right ) \rightarrow P\left ( 3 \right )$ benar, sehingga kembali dengan Modus Ponens, $P\left ( 3 \right)$ berlaku atau benar dan seterusnya.
Berapapun nilai $n$, kita dapat membuktikannya dengan meneruskan proses ini sampai kita mencapai $P\left ( n \right )$ berlaku.
Jadi, kita telah membuktikan $P\left ( n \right )$ untuk tiap $n$ anggota bilangan asli, dengan induksi matematika.
Contoh:
Dengan Induksi Matematika Buktikan Bahwa $1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$
Misalkan $P\left ( n \right )$ adalah proposisi berikut;
$P\left ( n \right ):$$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$
Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1=\frac{1}{2}\left ( 1 \right )\left ( 1+1 \right )$
$P\left ( 1 \right )$:$1=1$
$\therefore P\left ( 1 \right )$ berlaku atau benar.
kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$1+2=\frac{1}{2}\left ( 2 \right )\left ( 1+2 \right )$
$P\left ( 2 \right )$:$3=3$
$\therefore P\left ( 2 \right )$ berlaku atau benar.
Selanjutnya, kita masuk pada langkah induksi.
Misalkan $k$ sebuah bilangan asli, untuk $n=k$ pada $P\left ( n \right )$ adalah benar, sehingga berlaku
$1+2+3+\cdots +k$=$\frac{1}{2}k\left ( k+1 \right )$
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar, yaitu:
$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$
$1+2+3+\cdots +k+\left (k+1 \right )$=$\frac{1}{2}\left ( k+1 \right )\left ( k+1+1 \right )$
$1+2+3+\cdots +k+\left (k+1 \right )$=$\frac{1}{2}\left ( k+1 \right )\left ( k+2 \right )$
Dengan memanfaatkan keberlakuan sebelumnya saat $n=k$, kita peroleh persamaan;
$1+2+3+\cdots +k+\left ( k+1 \right )$
=$1+2+3+\cdots +k$$+\left ( k+1 \right )$
=$\frac{1}{2}k\left ( k+1 \right )$$+\left ( k+1 \right )$
=$\left( k+1 \right )\left [\frac{1}{2}k+1\right ]$
=$\left( k+1 \right )\frac{1}{2} \left (k+2\right )$
=$\frac{1}{2} \left( k+1 \right ) \left (k+2\right )$
sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.
$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$1+2+3+\cdots +n=\frac{1}{2}n\left ( n+1 \right )$ adalah benar (terbukti)
Soal latihan metode pembuktian pernyataan matematis berupa barisan dengan induksi matematika:
Dengan induksi matematika buktikan bahwa
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$
Langkah I
Misalkan $P\left ( n \right )$ adalah proposisi berikut;
$P\left ( n \right )$:$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$
Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1^{2}=\frac{1}{6}\left ( 1 \right )\left ( 1+1 \right )\left (2+1 \right)$
$P\left ( 1 \right )$:$1=1$
$\therefore P\left ( 1 \right )$ berlaku atau benar.
kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$1^{2}+2^{2}$=$\frac{1}{6}\left ( 2 \right )\left ( 2+1 \right )\left (4+1 \right)$
$P\left ( 2 \right )$:$5=5$
$\therefore P\left ( 2 \right )$ berlaku atau benar.
Langkah II
Selanjutnya, kita masuk pada langkah induksi.
Misalkan $k$ sebuah bilangan asli, untuk $n=k$ pada $P\left ( n \right )$ adalah benar, sehingga berlaku
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}$=$\frac{1}{6}k\left ( k+1 \right )\left (2k+1 \right)$
Langkah III
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar, yaitu:
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$=$\frac{1}{6}\left ( k+1 \right )\left ( k+1+1 \right )\left (2\left [ k+1 \right ]+1 \right)$
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$=$\frac{1}{6}\left ( k+1 \right )\left ( k+2 \right )\left (2k+3 \right)$
Dengan memanfaatkan keberlakuan sebelumnya saat $n=k$, kita peroleh persamaan;
$1^{2}+2^{2}+3^{2}+\cdots +k^{2}+\left ( k+1 \right )^{2}$
=$1^{2}+2^{2}+3^{2}+\cdots +k^{2}$$+\left ( k+1 \right )^{2}$
=$\frac{1}{6}\left ( k \right )\left ( k+1 \right )\left (2k+1 \right)$$+\left ( k+1 \right )^{2}$
=$\left ( k+1 \right )\left [\frac{1}{6}\left ( k\right ) \left (2k+1 \right)+\left ( k+1 \right )\right ]$
=$\left ( k+1 \right )\frac{1}{6}\left [\left ( k\right ) \left (2k+1 \right)+6\left ( k+1 \right )\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left [\left (2k^2+k \right)+\left ( 6k+6 \right )\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left [2k^2+k+6k+6\right ]$
=$\frac{1}{6} \left ( k+1 \right )\left (2k^2+7k+6\right )$
=$\frac{1}{6}\left ( k+1 \right )\left ( k+2 \right )\left (2k+3 \right)$
sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.
$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar maka
$1^{2}+2^{2}+3^{2}+\cdots +n^{2}$=$\frac{1}{6}n\left ( n+1 \right )\left (2n+1 \right)$ adalah benar (terbukti)
Soal latihan metode pembuktian pernyataan matematis berupa keterbagiaan dengan induksi matematika:
Dengan induksi matematika buktikan bahwa
$n^{3}-n$ selalu Habis Dibagi (HD) oleh $6$ untuk setiap $n$ bilangan asli
Langkah I
Misalkan $P\left ( n \right )$ adalah proposisi berikut;
$P\left ( n \right )$:$n^{3}-n$
Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$1^{3}-1$
$P\left ( 1 \right )$:$0$ HD $6$
$\therefore P\left ( 1 \right )$ berlaku atau benar.
kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$2^{3}-2$
$P\left ( 2 \right )$:$6$ HD $6$
$\therefore P\left ( 2 \right )$ berlaku atau benar.
Langkah II
Selanjutnya, kita masuk pada langkah induksi.
Misalkan $k$ sebuah bilangan asli, untuk $n=k$ pada $P\left ( n \right )$ adalah benar, sehingga berlaku
$k^{3}-k$ HD $6$ atau dengan kata lain bahwa $k^{3}-k$ sebuah bilangan kelipatan $6$
Langkah III
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar,
untuk $n=k+1$ maka $n^{3}-n$
=$\left ( k+1 \right )^{3}-\left ( k+1 \right )$
=$\left ( k+1 \right ) \left[ \left ( k+1 \right )^{2}-1 \right]$
=$\left ( k+1 \right ) \left[ k^{2}+2k\right]$
=$\left ( k+1 \right ) \left ( k \right )\left ( k+2 \right )$
=$\left ( k \right ) \left ( k+1 \right )\left ( k+2 \right )$
untuk $k$ bilangan asli maka $\left ( k \right )$, $\left ( k+1 \right )$, dan $\left ( k+2 \right )$ adalah tiga bilangan asli berurutan.
Karena perkalian tiga bilangan asli berurutan selalu habis dibagi $6$ maka $\left ( k \right ) \left ( k+1 \right )\left ( k+2 \right )$ HD $6$. Sampai pada tahap ini kita telah memperoleh bukti untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar.
$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ bahwa $P\left ( n \right )$ benar, maka $n^{3}-n$ selalu Habis Dibagi oleh $6$ untuk setiap $n$ bilangan asli.
Soal latihan metode pembuktian pernyataan matematis berupa ketidaksamaan dengan induksi matematika:
Dengan induksi matematika buktikan bahwa
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}$$\leq 2-\frac{1}{n}$
Langkah I
Misalkan $P\left ( n \right )$ adalah proposisi berikut;
$P\left ( n \right )$:$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}$
Pada langkah Basis Induksi, untuk $n=1$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 1 \right )$:$\frac{1}{1^{2}}\leq 2-\frac{1}{1}$
$P\left ( 1 \right )$:$1 \leq 1$
$\therefore P\left ( 1 \right )$ berlaku atau benar.
kita coba untuk $n=2$ pada $P\left ( n \right )$ kita peroleh
$P\left ( 2 \right )$:$\frac{1}{1^{2}}+\frac{1}{2^{2}}\leq 2-\frac{1}{2}$
$P\left ( 2 \right )$:$1\frac{1}{4} \leq 1\frac{1}{2}$
$\therefore P\left ( 2 \right )$ berlaku atau benar.
Langkah II
Selanjutnya, kita masuk pada langkah induksi.
Misalkan $k$ sebuah bilangan asli, untuk $n=k$ pada $P\left ( n \right )$ adalah benar, sehingga berlaku
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}$$\leq 2-\frac{1}{k}$
Langkah III
Akan kita buktikan berikutnya untuk $n=k+1$ bahwa $P\left ( n \right )$ juga benar, atau
untuk $n=k+1$ ketidaksamaan $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\frac{1}{\left ( k+1 \right )}$ adalah benar.
Eksplorasi:
$k\left (k+1 \right )\leq \left ( k+1 \right )\left ( k+1 \right )$
$\frac{1}{k\left (k+1 \right )}\geq \frac{1}{\left ( k+1 \right )\left ( k+1 \right )}$
$\frac{1}{k\left (k+1 \right )} = \frac{1}{k}-\frac{1}{\left ( k+1 \right )}$
Pada ketidaksamaan $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+$$\leq 2-\frac{1}{k}$ ruas kiri dan ruas kanan sama-sama kita tambahkan $\frac{1}{\left ( k+1 \right )^{2}}$.
Sehingga ketidaksamaan menjadi
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+$$\frac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\frac{1}{k}$+$\frac{1}{\left ( k+1 \right )^{2}}$
Dengan menggunakan ketidaksamaan $\frac{1}{\left ( k+1 \right )\left ( k+1 \right )}\leq \frac{1}{k\left (k+1 \right )}$ yang kita temukan pada tahap eksplorasi, ada ketidaksamaan baru yang bisa kita terapkan yaitu;
$\frac{1}{\left ( k+1 \right )\left ( k+1 \right )}\leq \frac{1}{k\left (k+1 \right )}$
$2-\frac{1}{k}+\frac{1}{\left ( k+1 \right )\left ( k+1 \right )}\leq 2-\frac{1}{k}+\frac{1}{k\left (k+1 \right )}$
$2-\frac{1}{k}$+$\frac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\frac{1}{k}+\frac{1}{k}-\frac{1}{\left ( k+1 \right )}$
$2-\frac{1}{k}$+$\frac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\frac{1}{\left ( k+1 \right )}$
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+$$\frac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\frac{1}{k}$+$\frac{1}{\left ( k+1 \right )^{2}}$
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+$$\frac{1}{\left ( k+1 \right )^{2}}$$\leq 2-\frac{1}{\left ( k+1 \right )}$
$\therefore$ Karena untuk $n=1$, $n=k$, dan $n=k+1$ $P\left ( n \right )$ benar, maka $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}$$\leq 2-\frac{1}{n}$ benar.
Apabila ada masukan yang sifatnya membangun terkait masalah alternatif penyelesaian atau request pembahasan soal, silahkan disampaikan, kami dengan senang hati segera menanggapinya😊😊.
Jika Bermanfaat👌 Jangan Lupa Untuk Berbagi 🙏Share is Caring👀
Artikel ini sebelumnya di Posting oleh http://www.defantri.com