Pak, Berapakah Sin 18 Derajat?
Sunday, February 25, 2018
Edit
Selain menghitung $sin\ 18^{\circ}$, bapak Benny Yong juga memperkenalkan beberapa istilah dalam matematika, ada Eksplorasi, Telescoping, Harmonic Means (HM), Arithmetic Means (AM), Geometric Means (GM), Quadratic Means (QM), Pertidaksamaan Cauchy, Pertidaksamaan Renata dan lain sebagainya.
Sebelum kita coba menghitung nilai $sin\ 18^{\circ} $. Kita sudah mengetahui kisaran nilai adalah $0\ <\ sin\ 18\ <\ 1 $ dan beberapa data pendukung, antara lain;
- $sin\ a=cos\ \left ( 90-a \right ) $
- $sin\ \left ( a+b \right )=sin\ a\ cos\ b\ +\ Sin\ b\ cos\ a $
- $cos\left ( a+b \right )=cos\ a\ cos\ b\ -\ sin\ a\ sin\ b $
- $sin^{2}a+cos^{2}a=1 $
$sin\ 18$ mempunyai hubungan (sudut berelasi) dengan $sin\ 36,\ sin\ 54,\ cos\ 36,\ dan\ cos\ 54$.
Dari beberapa sudut berelasi diatas kita gunakan beberapa, yaitu $cos\ 36,\ dan\ sin\ 54$
$cos\ 36=cos\ \left (18+18 \right )$
$cos\ 36=cos^{2}18-sin^{2}18 $
$cos\ 36=\left (1-sin^{2}18 \right )-sin^{2}18 $
$cos\ 36=1-2sin^{2}18$
$sin\ 54=\left ( 18+36 \right ) $
$sin\ 54=sin\ 18\ cos\ 36\ +\ Sin\ 36\ cos\ 18$
$sin\ 54=sin18 \left(1-2sin^{2}18 \right)+\left(2sin18\cos18\right)cos18$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ cos^{2} 18$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ \left (1-sin^{2}18 \right )$
$sin\ 54=sin\ 18\ -2sin^{3}18 +\ 2sin\ 18\ -2sin^{3}18$
$sin\ 54=3sin\ 18\ -4sin^{3}18$
Berikut kita samakan;
$cos\ 36=sin\ 54$
$1-2sin^{2}18=3sin\ 18\ -4sin^{3}18$
Untuk mempermudah penulisan, kita misalkan saja $sin\ 18\ =\ p$
$1-2sin^{2}18=3sin\ 18\ -4sin^{3}18$
$1-2p^{2}=3p -4p^{3}$
$4p^{3}-2p^{2}-3p+1=0$
$\left (4p^{2}+2p-1 \right )\left (p-1 \right )=0$
Untuk $\left (p-1 \right )=0$ Tidak Memenuhi (TM) karena dari persamaan ini kita peroleh nilai $p=1$ dan $sin\ 18=1$, seperti yang kita tahu bahwa ini tidak sesuai dengan kisaran nilai $sin\ 18$.
Sekarang kita hanya konsentrasi kepada $\left (4p^{2}+2p-1 \right )=0$
Untuk mendapatkan nilai p, kita menggunakan rumus abc,
$p_{12}=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}$
$p_{12}=\frac{-2\pm \sqrt{2^{2}-4\cdot 4\cdot \left (-1 \right )}}{2\left (4 \right )}$
$p_{12}=\frac{-2\pm \sqrt{4+16}}{8}$
$p_{12}=\frac{-2\pm 2\sqrt{5}}{8}$
$p_{12}=\frac{-2\pm 2\sqrt{5}}{8}$
$p_{12}=-\frac{1}{4}\pm \frac{1}{4}\sqrt{5}$
Dari persamaan diatas kita peroleh dua nilai $p$
$p_{1}=-\frac{1}{4} + \frac{1}{4}\sqrt{5}$
$p_{2}=-\frac{1}{4} - \frac{1}{4}\sqrt{5}$
Dari dua nilai diatas, nilai yang memenuhi adalah $p_{1}=-\frac{1}{4} + \frac{1}{4}\sqrt{5}$.
Sehingga nilai $sin\ 18^{\circ} $ yang kita hitung adalah $-\frac{1}{4} + \frac{1}{4}\sqrt{5}$.
Jika Anda mempunyai alternatif penyelesaian untuk menghitung $sin\ 18^{\circ} $ mari berbagi.
Artikel ini sebelumnya di Posting oleh http://www.defantri.com